Novel interpretation of contour integral spectral projection methods for solving generalized eigenvalue problems
نویسندگان
چکیده
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for such problems. In this study, from an analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we provide a novel interpretation of these methods. We also propose a new algorithm based on this interpretation.
منابع مشابه
Solving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملA Contour-integral Based Qz Algorithm for Generalized Eigenvalue Problems
Recently, a kind of eigensolvers based on contour integral were developed for computing the eigenvalues inside a given region in the complex plane. The CIRR method is a classic example among this kind of methods. In this paper, we propose a contour-integral based QZ method which is also devoted to computing partial spectrum of generalized eigenvalue problems. Our new method takes advantage of t...
متن کاملA FEAST algorithm with oblique projection for generalized eigenvalue problems
The contour-integral based eigensolvers are the recent efforts for computing the eigenvalues inside a given region in the complex plane. The best-known members are the Sakurai-Sugiura (SS) method, its stable version CIRR, and the FEAST algorithm. An attractive computational advantage of these methods is that they are easily parallelizable. The FEAST algorithm was developed for the generalized H...
متن کاملA numerical method for polynomial eigenvalue problems using contour integral
We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the d...
متن کاملParallel performance of CIRR method with complete factorization preconditioner on multi-core
We consider a parallel method for solving generalized eigenvalue problems that arise from molecular orbital calculation of the biochemistry application. Our focus is to develop scalable parallel implementations of the method that achieves high performance on multi-core clusters. In a Rayleigh-Ritz type method using a contour integral (CIRR method), the computation at each contour involves linea...
متن کامل